US009128723B2

a2z United States Patent (10) Patent No.: US 9,128,723 B2
Sasikumar et al. (45) Date of Patent: Sep. 8, 2015
(54) METHOD AND APPARATUS FOR DYNAMIC (56) References Cited
DOCUMENT OBJECT MODEL (DOM)
AWARE CODE EDITING U.S. PATENT DOCUMENTS
. 8,387,006 B1* 2/2013 Taylorcccceeverevnnene 717/110
(71) Applicant: Adobe Systems Incorporated, San Jose, 2007/0055964 A1* 3/2007 Mirkazemietal. 717/140
CA (US) 2009/0327858 Al* 12/2009 Tsunetal. 715/234
2010/0269095 Al* 10/2010 Kingetal. 717111
(72) Inventors: Anirudh Sasikumar, Foster City, CA 2014/0047413 Al* 2/2014 Shelveetal. ..o 717/110
(US); Slljit Reddy Gurrala, Bangalore OTHER PUBLICATIONS
(IN)
Jensen et al., “Modeling the HTML DOM and Browser API in Static
(73) Assignee: ADOBE SYSTEMS Analysis of JavaScript Web Applications,” ACM, 2011.*
INCORPORATED, San Jose, CA (US)
* cited by examiner
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Primary Examiner — Insun Kang
U.S.C. 154(b) by 159 days. (74) Attorney, Agent, or Firm — Keller Jolley Preece
(21) Appl. No.: 13/903,208 (57) ABSTRACT
; A computer implemented method and apparatus for dynamic
22) Filed: May 28, 2013 P P PP Y
(22) File Ay 2% Document Object Model (DOM) aware code editing. The
(65) Prior Publication Data method compr.ising storing, in a DOM mode.l, a plurality of
Document Object Model (DOM) elements in one or more
US 2014/0359571 Al Dec. 4,2014 HyperText Markup Language (HTML) files for a project; and
storing, in the DOM model at least one modification to the
(51) Int. CL DOM that results from execution of one or more JavaScript
GO6l’ 9/44 (2006.01) code files for the project, wherein during JavaScript code
(52) US.CL editing, the at least one modification to the DOM identifies an
CPC it GO6F 8/35(2013.01) interaction between the JavaScript code and the DOM ele-
(58) Field of Classification Search ments.
None

See application file for complete search history.

20 Claims, 4 Drawing Sheets

COMPUTER

i
104

{
| CPU le——= SUPPORT CIRCUITS
\

MEMORY

100

106

) r~—102
110

| OPERATING SYSTEM |~-112

HTML CODE FILES {(~-114

| JAVA SCRIPT FILES |~—116

DOM MODEL —-120

SOURCE CODE EDITOR ~-122

U.S. Patent Sep. 8, 2015 Sheet 1 of 4

US 9,128,723 B2

COMPUTER 1?6
CPU ke—>| SUPPORT CIRCUITS
B
104
MEMORY

OPERATING SYSTEM

112

HTML CODE FILES

~— 114

JAVA SCRIPT FILES

—~-116

DOM MODEL ~-120

PARSER [~—124

ANALYZER (~-126

SOURCE CODE EDITOR [~-122

—~—102

110

FIG. 1

U.S. Patent Sep. 8, 2015 Sheet 2 of 4 US 9,128,723 B2

200
(START)}~-202 T

\
ANALYZE HTML FILES ~—204

\
ANALYZE JAVASCRIPT FILES ~206

\
STORE INFORMATION IN DOM MODEL ~-208

\
(END)»~-210

FIG. 2

300

{(START (302

\
ACCESS HTML FILES {~304

/
PARSE HTML ELEMENTS [~ 306

[
STORE INFORMATION ABOUT HTML ELEMENTS |~ 308

[
(END)»~-310

FIG. 3

U.S. Patent

Sep. 8, 2015 Sheet 3 of 4

ACCESS JAVASCRIPT FILES |~ 404

402

!

Y 4

06
ATTRIBUTES NO

MODIFIED 7

408
YES 8

RECORD CHANGES TO EACH ATTRIBUTE

Y 410

L
FUNCTION NO

CALL?

YES

RECORD CHANGES MADE IN
INVOKED FUNCTION CALL

—~—412

“\<
/
ADD/ REMOVE NO

HTML
ELEMENT ?

YES
RECORD ADDITION/ DELETION ~—416

\

418

YES MORE CODE

TO ANALYZE ?

~— 420

FIG. 4

US 9,128,723 B2

400

US 9,128,723 B2

Sheet 4 of 4

Sep. 8, 2015

U.S. Patent

G Old

TNLLH LIbIdSTISNT 1908 d

db

906

206~

P0G - i</ AUSB|I8,\=P1 IndUI>, = TN L HIBUUI'MOLIE
‘[0l (modreysi,)§ = mouse e

+ (iINOSND0LUO ‘,INOSNO0Y,)PUIG (L, XOGIONPOE,)S
- (paiejugynuo ‘dnisy,)puiq-(Jnduing,)$

s (patspuzTdNUO *anjg,) pulg (andulling,)

- (dnAsyuo ‘ dnfey,)puig (xogoupas,)$

ZABUGNSH,)
A:>mcgjm#=vw
‘(LARUGNSH,)S

(,uapply, LANgisia,)
s (a1a1sIA, LANNGISIA,

- (00001 ‘.xapul-z,)

(00001~ ‘ Xopul-z,)889 (,ZABUGNSH,)
- (,In dnyag,)Bo|8j0sU0D

~—

}

()iIndmes uonouny

6¢
8¢
e

¥4
0c
6l
81
Ll

]

SL
Nm:.d:[ON_.
AJLVIOH
X31VYLOH.

aangvsiasle
Srinddy -

a _ o & %!

RENTEY

(

SPdiNgLn

r zot:m dvd 1510080

. SriNddvn

TNLH TNLH F1dNISO.
IOVMOVC LINVY43A) 6 -
JHS -
INLH 31dNIS A 4

. 58|€\ 8 e

« |SrAwanor[] 1) SrIdWaL) TWLHWLH 31aWIS [X 103rouds)
< [LIMIdS 84| & cmep a3 |@MBRNC] lee|BBH-O]
NHOJ1V1d 35dI103 - ST INddV/OdS/ WWLH T IdNIS - 11bIdS § 000

00§

US 9,128,723 B2

1

METHOD AND APPARATUS FOR DYNAMIC
DOCUMENT OBJECT MODEL (DOM)
AWARE CODE EDITING

BACKGROUND OF THE INVENTION

1. Field of the Invention

Embodiments of the present invention generally relate to
software development and, more particularly, to a method and
apparatus for dynamic Document Object Model (DOM)
aware code editing.

2. Description of the Related Art

HyperText Markup Language (HTML) is used by web
developers to create web pages. Tags in HTML pages create
objects, such as images, forms, buttons, and the like. When
the HTML code runs, these objects are represented in a Docu-
ment Object Model (DOM) of the page as a tree structure.
JavaScript is used to manipulate the HITML objects in the
DOM in order to create, for example, dynamic user interfaces
on the web. JavaScript code is embedded in an HTML file
between <SCRIPT> and </SCRIPT> tags. Below a line in
which the developer embeds the JavaScript code, the devel-
oper can reference, or call, that JavaScript code in response to
an event handler or an HTML link. Between the <SCRIPT>
and </SCRIPT> tags, a developer may include JavaScript
code directly into the HTML or the developer may use a
separate, external JavaScript file (a file containing only Java-
Script statements and bearing a .js extension) in the HTML
file. Hence, JavaScript code that transforms the DOM has an
indirect relationship with the DOM, in that its effect on the
DOM is not made clear until the JavaScript code executes on
the DOM.

Because of the dynamic interrelationship between the
DOM and the JavaScript code, developer authoring tools,
such as integrated development environments (IDEs), cannot
accurately assist developers in providing code completion,
code refactoring or other productivity features, since code
authoring is a process done prior to code execution, before the
code has a dynamic effect on the DOM. That is, currently,
code completion prior to code execution is based solely on the
static HTML DOM. The static HTML DOM represents the
created HTML objects without the execution of the JavaS-
cript code that makes it dynamic. For example, when a devel-
oper types atag, such as <p>, a current auto-complete feature
may automatically input </p> because the end tag </p> is
required at some point after the start tag <p>, in accordance
with the static DOM. However, code completion hints such as
variable or attribute completion during code development is
not possible. Hence, code completion is poor and incomplete
at best.

Therefore, there is a need for a method and apparatus for
dynamic DOM aware code editing.

SUMMARY OF THE INVENTION

A method and apparatus for dynamic Document Object
Model (DOM) aware code editing substantially as shown in
and/or described in connection with at least one of the figures,
as set forth more completely in the claims.

These and other features and advantages of the present
disclosure may be appreciated from a review of the following
detailed description of the present disclosure, along with the
accompanying figures in which like reference numerals refer
to like parts throughout.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an apparatus for dynamic
Document Object Model (DOM) aware code editing, accord-
ing to one or more embodiments;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 is a flowchart of a method for generating the DOM
model as performed by the source code editor of FIG. 1,
according to one or more embodiments;

FIG. 3 is a flowchart of a method for analyzing the HTML
files of a project, as performed by the source code editor of
FIG. 1, according to one or more embodiments;

FIG. 4 is a flowchart of a method for analyzing JavaScript
files of a project, as performed by the source code editor of
FIG. 1, according to one or more embodiments; and

FIG. 5 depicts a screen shot of using the DOM model of
FIG. 1 during code development, according to one or more
embodiments.

While the method and apparatus is described herein by way
of example for several embodiments and illustrative draw-
ings, those skilled in the art will recognize that the method
and apparatus for dynamic Document Object Model (DOM)
aware code editing is not limited to the embodiments or
drawings described. It should be understood, that the draw-
ings and detailed description thereto are not intended to limit
embodiments to the particular form disclosed. Rather, the
intention is to cover all modifications, equivalents and alter-
natives falling within the spirit and scope of the method and
apparatus for dynamic Document Object Model (DOM)
aware code editing defined by the appended claims. Any
headings used herein are for organizational purposes only and
are not meant to limit the scope of the description or the
claims. As used herein, the word “may” is used in a permis-
sive sense (i.e., meaning having the potential to), rather than
the mandatory sense (i.e., meaning must). Similarly, the
words “include”, “including”, and “includes” mean includ-
ing, but not limited to.

DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the present invention include a method
and apparatus for dynamic Document Object Model (DOM)
aware code editing. The embodiments create a DOM model to
hold data about changes to the objects in the HTML code. The
DOM model records changes in a list data structure. Each
node in the list holds data about changes to HTML, for
example, when an attribute is added, removed, or modified or
when a tag is added, removed, or modified. The data recorded
is the type of change and the actual attribute/tag key value
pair.

The embodiments parse the HTML files for a project and
analyze each line, one at a time. The embodiments then parse
the JavaScript files for the project and analyze each line one at
a time. The embodiments store information from the JavaS-
cript files. If an HTML element is added or modified, the
method records the added/modified attribute, the element, the
change to the attribute, and the line number where the addi-
tion/modification took place. If a function is invoked, the
method records the changes to the DOM that are made from
the invoked function and records them as changes made in the
line where the function was invoked. If an HTML element is
added or removed, the method records the addition/deletion
and the line number where the addition/deletion occurred.
Finally, the method stores the information in a DOM model.
The DOM model includes a list of static DOM elements in an
HTML file, elements that have been added and removed at
various locations, and modifications made to DOM elements
at various locations.

Advantageously, the present invention may be a plug-in in
any integrated development environment (IDE) targeting web
application developers using HTML and JavaScript as their
platform, such as ADOBE® DREAMWEAVER®,
ADOBE® Edge Code, ADOBE® COLDFUSION®

US 9,128,723 B2

3

BUILDER™, and the like. With the creation of a DOM model
in accordance with embodiments of the invention, features
may be added to the IDE to increase developer productivity,
including, but not limited to, code hinting with static and
dynamic DOM elements, displaying a state of an HTML
DOM at a location, displaying a list of changes made to an
HTML DOM at a location, live error highlighting, and/or
code factoring.

Various embodiments of a method and apparatus for
dynamic Document Object Model (DOM) aware code editing
are described. In the following detailed description, numer-
ous specific details are set forth to provide a thorough under-
standing of claimed subject matter. However, it will be under-
stood by those skilled in the art that claimed subject matter
may be practiced without these specific details. In other
instances, methods, apparatuses or systems that would be
known by one of ordinary skill have not been described in
detail so as not to obscure claimed subject matter.

Some portions of the detailed description that follow are
presented in terms of algorithms or symbolic representations
of operations on binary digital signals stored within a
memory of a specific apparatus or special purpose computing
device or platform. In the context of this particular specifica-
tion, the term specific apparatus or the like includes a general-
purpose computer once it is programmed to perform particu-
lar functions pursuant to instructions from program software.
Algorithmic descriptions or symbolic representations are
examples of techniques used by those of ordinary skill in the
signal processing or related arts to convey the substance of
their work to others skilled in the art. An algorithm is here,
and is generally, considered to be a self-consistent sequence
of'operations or similar signal processing leading to a desired
result. In this context, operations or processing involve physi-
cal manipulation of physical quantities. Typically, although
not necessarily, such quantities may take the form of electri-
cal or magnetic signals capable of being stored, transferred,
combined, compared or otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to such signals as bits, data, values, elements,
symbols, characters, terms, numbers, numerals or the like. It
should be understood, however, that all of these or similar
terms are to be associated with appropriate physical quanti-
ties and are merely convenient labels. Unless specifically
stated otherwise, as apparent from the following discussion, it
is appreciated that throughout this specification discussions
utilizing terms such as “processing,” “computing,” “calculat-
ing,” “determining” or the like refer to actions or processes of
a specific apparatus, such as a special purpose computer or a
similar special purpose electronic computing device. In the
context of this specification, therefore, a special purpose
computer or a similar special purpose electronic computing
device is capable of manipulating or transforming signals,
typically represented as physical electronic or magnetic
quantities within memories, registers, or other information
storage devices, transmission devices, or display devices of
the special purpose computer or similar special purpose elec-
tronic computing device.

FIG. 1 is a block diagram of an apparatus 100 for dynamic
Document Object Model (DOM) aware code editing, accord-
ing to one or more embodiments. The apparatus 100 includes
a computer 102. The computer 102 includes a Central Pro-
cessing Unit (CPU) 104, support circuits 106, and a memory
110. The CPU 104 may include one or more commercially
available microprocessors or microcontrollers that facilitate
data processing and storage. The various support circuits 106
facilitate the operation of the CPU 104 and include one or
more clock circuits, power supplies, cache, input/output cir-

29 <

10

15

20

25

30

35

40

45

50

55

60

65

4

cuits, and the like. The memory 110 includes at least one of
Read Only Memory (ROM), Random Access Memory
(RAM), disk drive storage, optical storage, removable storage
and/or the like.

The memory 110 includes an operating system 112, one or
more HTML code files 114, one or more JavaScript files 116,
a DOM model 120, and a source code editor 122. The oper-
ating system 112 may include various commercially known
operating systems. The source code editor 122 is a text editor
program designed specifically to allow programmers to edit
source code of computer programs and includes a parser 124
and an analyzer 126.

When a source code editor 122 is opened, the parser 124
parses the HTML files 114 for a project and the analyzer 126
analyze each line of each HTML file 114, one at a time. The
parser 124 then parses the JavaScript files 116 for the project
and the analyzer 126 analyzes each line of each JavaScript file
116, one at a time. The source code editor 122 stores infor-
mation that the analyzer 126 has extracted from the JavaScript
files 116. If an HTML element is added or modified, the
source code editor 122 records as information the added/
modified attribute, the element, the change to the attribute,
and the line number where the addition/modification took
place. If a function is invoked, the source code editor 122
records as information the changes to the DOM that are made
from the invoked function and records them as changes made
in the line where the function was invoked. If an HTML
element is added or removed, the source code editor 122
records as information the addition/deletion and the line num-
ber where the addition/deletion occurred. Finally, the source
code editor 122 stores the recorded information in a DOM
model 120. The DOM model 120 includes a list of static
DOM elements from the HTML files 114, elements that have
been added and/or removed at various locations, as well as
modifications made to DOM elements at various locations.

FIG. 2 is a flowchart of a method 200 for generating the
DOM model 120 as performed by the source code editor 122
of FIG. 1, according to one or more embodiments. The
method 200 analyzes the HTML files and the JavaScript files
to create the DOM model, which may be used for assisting
developers by providing code completion, code refactoring,
or other productivity features.

The method 200 starts at step 202 and proceeds to step 204.
At step 204, the method 200 analyzes and records all HTML
files for a project, as described in further detail with respect to
FIG. 3, below. The method 200 proceeds to step 206, where
the method 200 analyzes and records all JavaScript files for a
project, as described in further detail with respect to FIG. 4,
below.

The method 200 proceeds to step 208, where the method
200 stores the information recorded during the analysis of the
HTML files and JavaScript files in a DOM model. The DOM
model contains a list of static DOM elements from the HTML
file, all of the interactions between the HTML elements and
JavaScript recorded, including when elements are created
and/or removed, when attributes of elements are modified,
and when and what functions access or modify the HTML
elements and any other modifications made to the DOM
elements at various locations. The DOM model is created
during code development, before code execution, so that it
may be used for assisting developers during code creation
and/or editing by providing code completion (i.e., predicting
aword or phrase based on what is already typed), code refac-
toring (i.e., renaming a variable or method in one place and
having the name change reflecting in all places where the
variable or method is used), or other productivity features.
The method 200 proceeds to step 210 and ends.

US 9,128,723 B2

5

FIG. 3 is a flowchart of a method 300 for analyzing the
HTML files of a project, as performed by the source code
editor 122 of FIG. 1, according to one or more embodiments.
The method 300 accesses the HTML files for a project and
stores information about all of the elements including loca-
tion information, such as the line number where the element
is added.

The method 300 starts at step 302 and proceeds to step 304.
At step 304, the method 300 accesses the HTML files for a
project. The HTML files include HTML elements. HTML
elements contain a start tag and an end tag. For example, a
paragraph has a start tag of <p>and an end tag of </p>. A link
may have a start tag of and an end
tag of . The element content is everything between the
start tag and the end tag. HTML elements may have attributes.
An attribute may be a class of an element, a unique id for an
element, a style for an element, a title for the element, and the
like. In the previous example, the link address is specified in
a href attribute.

The method 300 proceeds to step 306, where the method
300 parses the HTML file one line at a time. Parsing com-
prises a rule-based analysis of a string of words into constitu-
ent parts. For each line of each HTML file, the method 300
reads the HTML element. For example, line 7 of an HTML
file may read:

<div id="divlogin”/>

The <div> tag is used to group together HTML elements
and apply the same style, for example, font, to the included
elements. The method 300 parses the line of code so as to
recognize that this is an HTML element that is of type div and
has an id attribute of “divLogin”. If, for example, an attribute
value of an HTML element makes a JavaScript call, for
example, onmouseover="foo(event)”, the value of the
attribute is stored as a string.

The method 300 proceeds to step 308, where the method
300 stores the information about the element, including the
line number where the element was added. The information
may be stored in a temporary file or stored in the DOM model.
The information may be stored as follows:

Value: <div id='divLogin/>

Type: dom addition

Line: 7

File: main.js

The method 300 parses each line of each HTML file and
stores the information. When complete, the method 300 has
stored all HTML elements of the project, including their
attributes and when they were added, removed, or modified.
When all lines of HTML code are analyzed, the method 300
proceeds to step 310 and ends.

FIG. 4 is a flowchart of a method 400 for analyzing Java-
Script files of a project, as performed by the source code
editor 122 of FIG. 1, according to one or more embodiments.
The method 400 accesses the JavaScript files for a project and
records information about actions taking place in the JavaS-
cript code including location information, such as the line
number where the action is performed. There are six data
types in JavaScript, namely, object, number string, Boolean,
null, and undefined. These data types may be manipulated
using the JavaScript code in the files. The method 400 records
these changes and the locations in the code where they occur.

The method 400 starts at step 402 and proceeds to step 404.
At step 404, the method 400 accesses the JavaScript files for
a project. The JavaScript file contains code that manipulates
the HTML elements. The code may add or edit attributes of an
element, make function calls that modify HTML elements,
and/or add or remove HTML elements. The method 400

10

15

20

25

30

35

40

45

50

55

60

6

analyzes each line of each JavaScript file. The method 400
starts with a first line of code and proceeds to step 406.

At step 406, the method 400 parses the line of code and
determines whether one or more attributes are added or modi-
fied. For example, the code may read:

1. var txtlnput=document.getElementByld(“txtInput™);

2. txtlnput.setAttribute(“type”, “password”);

In the above example, the txtInput element has a type
attribute that is set to password in line 2. If the method 400
determines that an attribute is added or modified, the method
400 proceeds to step 408, where the method 400 records the
changes to the attribute. The change may be recorded as
follows:

Attribute: type

NewValue: password

OldValue:

Target: txtInput

Type attribute modification

Line 122

File: foo.js

The method 400 proceeds to step 410. However, if at step
406, the method 400 determines that an attribute has not been
added or modified, the method 400 proceeds to step 410.

At step 410, the method 400 determines whether the code
contains a function call. For example, line number 129 may
contain:

function someFunction() {
var newDiv = document. getElementBylId("newlyMinted");
newDiv.setAttribute("'class”, "newlyMinted Style");
var txtInput = document.getElementById("txtInput”);
txtInput.setAttribute("value”, "Sometext");

If the method 400 determines the line of code contains a
function call, the method 400 analyzes the code inside the
function. The method 400 proceeds to step 412, where the
method 400 records changes to the DOM made in the invoked
function and records the changes as changes made in the line
number where the function call is made, in this example, line
129. Each change that is stored has a scope associated with it.
The scope may be “global” or the scope may be a particular
function. In the example above, the scope is “someFunction”.
One element describes the modification of an attribute class
of'element newlyMinted, whereas a second element describes
the modification of an attributed value for an element with id
txtlnput, stored as described above.

The method 400 proceeds to step 414. However, if at step
410, the method 400 determines that a function call is not
made, the method 400 proceeds to step 414.

At step 414, the method 400 determines whether HTML
elements are added or removed. For example, the code may be
as follows:

1. varlblPwd=document.create TextNode(“Password:”);

2. var divLogin=document.getElementByld(“divLogin”);

3. divLogin.appendChild(1bIPwd);

In the code, a new element of type TextNode is created in
line number 1 and this newly created element is added as a
child in line number 2 to an element whose id is divLogin. If
the method 400 determines the code adds or removes an
element, the method 400 proceeds to step 416, where the
method 400 records the addition/deletion. The method 400
may record the addition/deletion as follows:

Type: dom addition

Target: passwordInput

Parent: divLogin

US 9,128,723 B2

Position: 2

Line: 3

File: main.js

The method 400 proceeds to step 418. However, if at step
414, the method 400 determines that an element has not been
added or deleted, the method 400 proceeds to step 418. At step
418, the method 400 determines whether there is more code to
analyze. If the method 400 determines there is more code to
analyze, the method 400 proceeds to step 406 and iterates
until all of the JavaScript code has been analyzed. When all
code has been analyzed, the method 400 proceeds to step 420
and ends.

FIG. 5 depicts a screen shot 500 of using the DOM model
120 of FIG. 1 during code development, according to one or
more embodiments. The screen shot 500 contains JavaScript
code 502 for a project. A developer may add line 33 (504) of
code assigning variable arrow an input id of “eileen”. Imme-
diately upon hitting return during the code development, this
information is stored in the SOM model. On line 35 (506), the
developer may type “$("#e”. In the prior art, JavaScript APIs
access the DOM to generate auto-complete hints 508. How-
ever, the DOM is not created until the code is executed. Using
the DOM model of the present invention, even without code
execution, the JavaScript APIs may access the DOM model in
order to produce the auto-complete hints 508.

The embodiments of the present invention may be embod-
ied as methods, apparatus, electronic devices, and/or com-
puter program products. Accordingly, the embodiments of the
present invention may be embodied in hardware and/or in
software (including firmware, resident software, micro-code,
etc.), which may be generally referred to herein as a “circuit”
or “module”. Furthermore, the present invention may take the
form of a computer program product on a computer-usable or
computer-readable storage medium having computer-usable
or computer-readable program code embodied in the medium
for use by or in connection with an instruction execution
system. In the context of this document, a computer-usable or
computer-readable medium may be any medium that can
contain, store, communicate, propagate, or transport the pro-
gram for use by or in connection with the instruction execu-
tion system, apparatus, or device. These computer program
instructions may also be stored in a computer-usable or com-
puter-readable memory that may direct a computer or other
programmable data processing apparatus to function in a
particular manner, such that the instructions stored in the
computer usable or computer-readable memory produce an
article of manufacture including instructions that implement
the function specified in the flowchart and/or block diagram
block or blocks.

The computer-usable or computer-readable medium may
be, for example but not limited to, an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system,
apparatus, device, or propagation medium. More specific
examples (a non-exhaustive list) of the computer-readable
medium include the following: hard disks, optical storage
devices, a transmission media such as those supporting the
Internet or an intranet, magnetic storage devices, an electrical
connection having one or more wires, a portable computer
diskette, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, and a
compact disc read-only memory (CD-ROM).

Computer program code for carrying out operations of the
present invention may be written in an object oriented pro-
gramming language, such as Java®, Smalltalk or C++, and
the like. However, the computer program code for carrying
out operations of the present invention may also be written in

25

30

35

40

45

50

55

8

conventional procedural programming languages, such as the
“C” programming language and/or any other lower level
assembler languages. It will be further appreciated that the
functionality of any or all of the program modules may also be
implemented using discrete hardware components, one or
more Application Specific Integrated Circuits (ASICs), or
programmed Digital Signal Processors or microcontrollers.

The foregoing description, for purpose of explanation, has
been described with reference to specific embodiments. How-
ever, the illustrative discussions above are not intended to be
exhaustive or to limit the invention to the precise forms dis-
closed. Many modifications and variations are possible in
view of the above teachings. The embodiments were chosen
and described in order to best explain the principles of the
present disclosure and its practical applications, to thereby
enable others skilled in the art to best utilize the invention and
various embodiments with various modifications as may be
suited to the particular use contemplated.

The methods described herein may be implemented in
software, hardware, or a combination thereof, in different
embodiments. In addition, the order of methods may be
changed, and various elements may be added, reordered,
combined, omitted, modified, etc. All examples described
herein are presented in a non-limiting manner. Various modi-
fications and changes may be made as would be obvious to a
person skilled in the art having benefit of this disclosure.
Realizations in accordance with embodiments have been
described in the context of particular embodiments. These
embodiments are meant to be illustrative and not limiting.
Many variations, modifications, additions, and improvements
are possible. Accordingly, plural instances may be provided
for components described herein as a single instance. Bound-
aries between various components, operations and data stores
are somewhat arbitrary, and particular operations are illus-
trated in the context of specific illustrative configurations.
Other allocations of functionality are envisioned and may fall
within the scope of claims that follow. Finally, structures and
functionality presented as discrete components in the
example configurations may be implemented as a combined
structure or component. These and other variations, modifi-
cations, additions, and improvements may fall within the
scope of embodiments as defined in the claims that follow.

While the foregoing is directed to embodiments of the
present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

The invention claimed is:
1. A computer implemented method for dynamic Docu-
ment Object Model (DOM) aware code editing comprising:

storing, in a DOM model, a plurality of elements in one or
more HyperText Markup Language (HTML) files of a
project;

identifying, prior to code execution and in the DOM model,
at least one modification to the DOM elements that
results from the invocation of one or more JavaScript
code files for the project,

wherein during JavaScript code development, the at least
one modification to the DOM elements is based on an
interaction between the JavaScript code and the DOM
elements; and

accessing, prior to code execution, the DOM model to
perform at least one of code completion or code refac-
toring.

US 9,128,723 B2

9

2. The method of claim 1, wherein storing the plurality of
DOM elements comprises identifying at least a type of a
DOM element and a line number in which the DOM element
is identified.

3. The method of claim 1, wherein the at least one modifi-
cation to the DOM elements is at least one of an addition or
modification to an attribute of a DOM element, a function
call, or an addition or removal of a DOM element.

4. The method of claim 3, wherein the at least one modifi-
cation to the DOM elements comprises a line number where
the at least one modification is made.

5. The method of claim 4, wherein modifications made to
the DOM elements within a function are stored as changes
made at the line number where the function call was invoked.

6. The method of claim 1, further comprising updating the
DOM model after each line of code is entered.

7. The method as recited in claim 1, wherein accessing the
DOM model to perform at least one of code completion or
code refactoring comprises performing at least one of code
completion or code refactoring after each line of code is
entered.

8. A system for dynamic Document Object Model (DOM)
aware code editing comprising:

at least one processor; and

at least one non-transitory computer-readable storage

medium storing instructions thereon that, when
executed by the at least one processor, cause the system
to:

store, in a DOM model, a plurality of elements in one or

more HyperText Markup Language (HTML) files of a
project;

identify, prior to code execution and in the DOM model at

least one modification to the DOM elements that results
from the invocation of one or more JavaScript files for
the project, wherein during JavaScript code editing, the
at least one modification to the DOM is based on an
interaction between the JavaScript code and the DOM
elements; and

access, prior to code execution, the DOM model to perform

at least one of code completion or code refactoring.

9. The system of claim 8, wherein the instructions that
cause the system to store the plurality of DOM elements
further cause the system to identify at least a type of a DOM
element and a line number in which the DOM element is
identified.

10. The system of claim 8, wherein the at least one modi-
fication to the DOM elements is at least one of an addition or
modification to an attribute of a DOM element, a function
call, or an addition or removal of a DOM element, and
wherein the at least one modification to the DOM elements
comprises a line number where the at least one modification
is made.

11. The system of claim 10, wherein modifications made to
the DOM elements within a function are stored as changes
made at the line number where the function call was invoked.

10

15

20

25

30

35

40

45

50

10

12. The system of claim 8, further comprising instructions
that cause the system to update the DOM model after each
line of code is entered.

13. The system as recited in claim 8, the instructions that
cause the system to access the DOM model to perform at least
one of code completion or code refactoring further cause the
system to perform at least one of code completion or code
refactoring after each line of code is entered.

14. A non-transitory computer readable medium for stor-
ing computer instructions that, when executed by at least one
processor causes the at least one processor to perform a
method for dynamic Document Object Model (DOM) aware
code editing comprising:

storing, in a DOM model, a plurality of elements in one or

more HyperText Markup Language (HTML) files of a
project;

identifying, prior to code execution and in the DOM model,

at least one modification to the DOM elements that
results from the invocation of one or more JavaScript
code files for the project,

wherein during JavaScript code editing, the at least one
modification to the DOM is based on an interaction
between the JavaScript code and the DOM elements;
and

accessing, prior to code execution, the DOM model to
perform at least one of code completion or code refac-
toring.

15. The computer readable medium of claim 14, wherein
storing the plurality of DOM elements comprises identifying
at least a type of a DOM element and a line number in which
the DOM element is identified.

16. The computer readable medium of claim 14, wherein
the at least one modification to the DOM elements is at least
one of an addition or modification to an attribute of a DOM
element, a function call, or an addition or removal of a DOM
element.

17. The computer readable medium of claim 16, wherein
the at least one modification to the DOM elements comprises
a line number where the at least one modification is made.

18. The computer readable medium of claim 17, wherein
modifications made to the DOM elements within a function
are stored as changes made at the line number where the
function call was invoked.

19. The computer readable medium of claim 14, further
comprising updating the DOM model after each line of code
is entered.

20. The computer readable medium of claim 14, wherein
accessing the DOM model to perform at least one of code
completion or code refactoring comprises performing at least
one of code completion or code refactoring after each line of
code is entered.

